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Abstract

Understanding the distribution and intensity of recreational boating activities is key for man-

aging safety as well as environmental and social impacts. Recreational boating is a very

important component of the diverse maritime traffic in the southeastern United States. The

seasonal distribution of offshore recreational vessels in waters off the coast of Northeast

Florida and Southeast Georgia was modeled using several techniques (Poisson, negative

binomial, hurdle and zero inflated modes, generalized additive models, and generalized

mixed models) and by combining map-based information provided by recreational boaters

with environmental and geographical variables to find the most parsimonious model. Based

on model performance, the final model analysis was conducted using a GAM approach with

a negative binomial distribution. The best seasonal models explained between 86.1%–

88.6% of the total deviance. For most seasons, a model that included latitude, longitude,

interaction between latitude and longitude, chlorophyll a concentration, and abundance of

artificial reefs resulted in the best fit. The only exception was the model for the summer sea-

son, which did not include chlorophyll a concentration. Given the complexity of the study

area, with a number of maritime activities and several marine species co-occurring, these

models could provide information to analyze the distribution and overlap of recreational

boating trips with other maritime activities (e.g., cargo ships, commercial vessels) and spe-

cies (e.g., right whales, sea turtles, sharks). These analyses could be used to decrease

harmful interactions among these groups and activities.

Introduction

The southeastern United States is a complex region where diverse maritime activities occur. In

2012 there were almost two million people inhabiting the seven coastal counties that comprise

the study area in northeast Florida and southeast Georgia [1]. In addition, almost 87,500 recre-

ational boats were registered in these seven counties [2,3]. This represents an average of one

boat for every twenty-two residents, suggesting that recreational boating is an important and
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popular activity in the study area. Montes and others [4] estimated that recreational vessels

constitute 86% of vessel traffic at the main inlets of the study area. This includes boaters from

nearby counties, and from several states of the USA and other countries (e.g., Canada). How-

ever, information about the spatial and temporal distribution of offshore recreational vessel

traffic and activity in the study area is limited [4,5].

Understanding the distribution and intensity of recreational boating activities is key for

managing safety, environmental, and social impacts [6]. Managers have made use of vessel

traffic studies to address a number of issues, including human safety, waterway maintenance,

channel marking, user conflicts, wildlife management, and allocation of infrastructure and

boating facilities. For instance, Wu and others [7] examined boating safety issues and found

that, in general, the relative incident rate (e.g., number of accidents) increased as weather con-

ditions (e.g., wave height, sea surface temperature, air temperature, ice concentration, fog pres-

ence, and precipitation) deteriorated. Swett and others [8] designed a GIS-based decision

support system that considers the physical conditions and boating characteristics of the Intra-

coastal Waterway (ICW) when assessing the need for boating safety zones. Gorzelany [9] doc-

umented the effectiveness of regulatory speed zones in Miami-Dade and Palm Beach counties

in Florida and found that compliance with speed zones is significantly related to vessel size

and type. Bauduin and others [10] compared the spatial distribution and overlap of recrea-

tional vessels and manatees in Collier County, Florida. Their analyses provided a map showing

areas with high/low probability of manatee/recreational vessel co-occurrence. Information

from a regional waterway management system for Manatee, Sarasota, Charlotte, and Lee coun-

ties in Florida provides a tool and decision options for managing navigation channels in those

counties [11].

Several approaches for analyzing spatial patterns of recreational boaters have been utilized.

These include geostatistics and kernel density analysis [9,12,13,14,15,16], vessel traffic simula-

tions using agent-based models [17,18,19], and distribution models based on external (e.g.,

behavioral, geographic, and/or networks) and situational (e.g., weather, water temperature,

time, season) variables [20,21,22]. Nevertheless, the effect of external variables on the distribu-

tion of recreational boaters and the relationship among the different variables is not well

understood (especially at a seasonal scale and within the marine environment). Furthermore,

there is an array of statistical and modeling techniques for count data that, to our knowledge,

has not been explored and documented to predict spatial distribution and abundance of off-

shore recreational vessels. Therefore, the objectives of this analysis were to explore the associa-

tion between offshore recreational vessels and select external variables, as well as to explore

different modeling technique to describe mail survey derived count data (i.e., Poisson, negative

binomial, hurdle and zero inflated modes, generalized additive models, and generalized mixed

models) to find parsimonious models that best describe the seasonal distribution of offshore

recreational boating in the study area.

Methods

Study area

The study area comprised the offshore waters off the coast of Northeast Florida (Nassau,

Duval, St Johns, Flagler, and Volusia counties) and Southeast Georgia (Camden and Glynn

County) (Fig 1). The study area encompasses 28,523 km2, extends 133 km into the Atlantic

Ocean, and stretches 233 km along the coasts of Northeast Florida and Southeast Georgia. Sev-

eral anthropogenic activities occur in the area, including military, commercial, and recrea-

tional activities.

Spatial and seasonal distribution of offshore recreational vessels
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Data collection

Recreational boating surveys. A sample of offshore recreational boating routes in the

study area was obtained using a map-based questionnaire that was mailed to boat owners

between September and October 2012. The mail survey design was based on previous vessel

traffic studies [6,13,14,15,16]. The survey instrument and protocol were approved by the Insti-

tutional Review Board at the University of Florida. Survey participants received first an invita-

tion/concent letter and survey questionnaire, followed by a reminder post-card (one-week

later), and a replacement survey (two-weeks after). Boaters were asked to draw their entire on-

the-water route for four boating trips that they had conducted: one each for winter, spring,

summer, and fall. The sampling frame consisted of recreational boat owners whose vessels

were recorded transiting the navigable inlets in the study area (St Marys, St Johns, and St

Augustine) over a period of 17 months (2011–2012). Vessel owner names and addresses were

obtained by linking vessel characteristics recorded at the inlets (e.g., registration number or

vessel name and hailing port) with information contained in Florida’s and Georgia’s vessel reg-

istration systems, as well as the U.S. Coast Guard National Vessel Documentation Center data-

base [23]. Surveys were distributed to all identified recreational boaters (N = 5,034).

Completed surveys were digitized into ArcGIS 10.3 [24]. Non-response bias was evaluated by

comparing the self-reported age of early (proxy for respondents) and late (proxy for non-

respondents) respondents using a t-test [25].

Boating routes were digitized as polylines using an equidistant Universal Transverse Merca-

tor (UTM) projection. A sampling grid cell (5.56 x 5.56 km cells) was used to account for dis-

parities in our study area. The dependent variable (number of routes that intersected each grid

cell) was calculated using a spatial join of the boating routes and the sampling grid layer. Addi-

tionally, we re-coded the dependent variable into a presence/absence matrix by routes and

respondents to accommodate for the mixed model analysis of the winter routes.

Habitat variables. Several habitat variables were examined to model the relative probabil-

ity that a recreational vessel will occupy any given grid cell in the study area. Habitat covariates

included sea surface temperature (SST), chlorophyll a concentrations (Chl), water depth,

abundance of artificial reefs, distance from each grid centroid to the nearest inlet (km), and lat-

itude and longitude of each grid centroid.

We created seasonal composite images for chlorophyll a concentrations and SST using

monthly satellite-derived information from the NASA Ocean Color Webpage [26] obtained by

Terra and Aqua MODIS. Only pixels with high quality (quality = 0) were used for SST and

chlorophyll a concentrations. Water depth data (90 m horizontal resolution) was obtained

from the National Centers for Environmental Information [27]. The distance to the nearest

inlet was calculated in ArcGIS 10.3 using the centroid of each grid cell and the mouth of each

of the inlets in the study area. Information related with artificial reefs was downloaded from

the Florida Geographic Data Library [28]. This layer was spatially joined with the sampling

grid cells to obtain the number of artificial reefs and/or fish havens in each grid cell.

Data analysis

Habitat model associations. Partial Mantel tests using Ecodist [29] in the R software

package version 3.0.2 [30] were used to evaluate the association between each of the habitat

variables and the abundance of seasonal boating routes. This technique, a non-parametric test

Fig 1. Study area. Northeast Florida (Nassau, Duval, St Johns, Flagler, and Volusia counties) and Southeast Georgia (Camden

and Glynn County).

https://doi.org/10.1371/journal.pone.0208126.g001
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based on dissimilarity matrices, considers autocorrelation while assessing the degree of corre-

lation between variables [31,32]. The structure of the dissimilarity matrix is not independent;

therefore, we performed significant testing through permutation procedures (1,000

permutations).

Density model. The number of recreational boating trips per grid cell is a discrete non-

negative integer or count. There are several modeling techniques used for count data. Regres-

sion models for counts are nonlinear with many properties and special features intimately

connected to discreteness and nonlinearity [33]. To explore which of those techniques better

accommodates our dataset, we tested several modeling techniques: generalized linear models

(GLM) with a Poisson distribution, a negative binomial distribution, generalized additive

models with negative binomial link (GAM), hurdle negative binomial models, zero-inflated

negative binomial models, and a generalized linear mixed effects modeling approach.

The GLM and the GAM consist of three components. The first component corresponds to

the distribution of the response variable, the second is the specification of the systematic com-

ponent in terms of explanatory variables, and the third is the link between the mean and the

response variable and the systematic part [34,35]. The Poisson GLM assumes that the mean is

equal to the variance. Poisson models consider that count data are always non-negative and

tend to be heterogeneous. The negative binomial GLM is an alternative to the Poisson model

when there is over dispersion (the variability in the data is greater than the proposed model)

relative to a Poisson model [35]. The generalized additive model (GAM) with a negative bino-

mial link was also implemented. GAM is a generalized linear model with a linear predictor

involving a sum of smooth functions of covariates, which allows for non-linear relationships

between the dependent and the independent variables [34]. To account for the possibility of an

excessive number of zeros in the seasonal datasets, the boating trip abundance was also mod-

eled using two-part models. Zero inflation suggest that zeros are derived in two ways. The first

are zeros as a result of absence (i.e., the object of interest does not exist in the spatial location)

and the second are zeros as a result of non-detection (i.e., the object of interest does exist in

the location, but it was not observed). This process results in far more zeros than would be

expected for a specific distribution (in our case the negative binomial distribution). It is impor-

tant to account for zero inflation because it could bias the estimated parameters and lead to

over dispersion in the model [35]. In a two-part model, a binomial model is applied where

data are considered as zeros versus non-zeros. Then a Poisson or negative binomial model is

used to model the non-zero counts. The hurdle negative binomial model is a two-part model

that does not discriminate between the origins of the zeros. It assumes that a hurdle should be

crossed before values become non-zeros. In this case the distribution of the count part of the

model is zero truncated [35]. The zero-inflated negative binomial model (ZINB) is another

popular two-part model. It differs from the hurdle model in the sense that it models the zeros

as if they are coming from different processes (binomial and count processes). The distribution

for the count model in the ZINB is not zero-truncated (the count model is allowed to generate

zero values).

Model analyses were conducted in R software package version 3.0.2 [30] using distinct

packages. The MASS [36] and car [37] packages were used for the Poisson and Negative Bino-

mial regression. Hurdle and zero inflated negative binomial models were obtained using the

pscl package [38]. Generalized additive models were run using mgcv [39] and nlme [40]. To

account for collinearity, a stepwise procedure was implemented and habitat variables with var-

iance inflation factors (VIF) higher than 3 were eliminated from further models [34]. Model

diagnostics and autocorrelation estimates for the residuals using Moran’s Index were obtained

and model performance was compared using the Akaike Information Criterion (AIC), delta

AIC, and AIC weights (using MuMin) [41]. Predictions of each model were mapped and

Spatial and seasonal distribution of offshore recreational vessels
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compared using regression techniques (major axis regression) on the observed vs. predicted

values for each season using lmodel2 [42,43].

GAM model. Based on model performance, the final model analysis was conducted using

a GAM approach with a negative binomial distribution and logit link. To minimize overfitting,

a penalty term was added to the regression to control for the smoothness of the fitted curve by

setting the gamma = 1.4 in the ‘gam’ function to force the effective degrees of freedom to

count as 1.4 times the degrees of freedom in the generalized cross-validation score [34]. The

smoothness selection was fit using spline-based penalized likelihood estimation. Theta param-

eters and weighted penalties were determined by AIC, delta, AIC weights, residuals sum of

square, and root mean squared deviation estimates. Thin plate regression splines over location

were used to account for autocorrelation [44]. We followed a stepwise procedure for model

selection. The total deviance explained, the AIC estimates, and the significance of each added

variable (p>.05) were used to evaluate the role of the independent variables in explaining the

observed distribution of recreational vessels. Predictions of each working model were com-

pared with the observed dataset using regression techniques to validate the best model.

Mixed effect logistic model (presence/absence). The generalized mixed model (GLMM)

is an extension of the GLM that allows for correlation between the observations through the

introduction of random effects [35,45]. Models that include the random effect consider any

correlation between survey participants. Mixed effects models feature both fixed and random

effects. Fixed effects are unknown or constant variables (observations are independent). If we

assume that there is some type of relationship between observations, then those variables are

considered random effects [46]. In some cases, survey respondents provided more than one

recreational boating trip per season, therefore respondents’ ID was used as a random effect. A

model for the winter season was performed in R software version 3.0.2 using the lme4 package

[47]. Pearson correlations, boxplots, and VIF were used to select the habitat variables that were

included in the final model. The final model was selected using AIC estimates.

Results

We had a 19.03% return rate (n = 958 returned surveys). However, we were not able to use all

of the returned surveys. Forty-eight percent of those who returned a survey were not our target

population (e.g., inshore boaters, boating activities occurred out of our study area) or returned

a blank survey. Data collected from 507 surveys were digitized, which yielded a sample of

2,522 boating routes (all four seasons). Difference in the self-reported age for respondents

(early) (M = 56.9, SD = 10.8) and non-respondents (late) (M = 55.9; SD = 11.3) was not statisti-

cally significant (t (340) = 0.86, p = 0.39).

The mean count of routes intersecting any grid cell was 9.2 (SD = 20.5). Throughout all sea-

sons, 21% of grid cells showed no counts of recreational vessels. However, this number fluctu-

ated between 13% of grid cells with zero counts in the spring season up to 27% in the winter

season.

Habitat model associations

Seasonal mean SST varied from 19.8˚C (SD = 2.2) in winter to 27.3˚C (SD = 0.48) in summer.

Grid cells that were intercepted by at least one vessel route have a mean SST of 24.02˚C

(SD = 3.06). Seasonal chlorophyll a concentrations ranged from 0.9 mg/m3 (SD = 1.07) in

spring to 1.29 mg/m3 (SD = 1.3) in winter. Vessel routes were recorded at chlorophyll a mean

concentrations of 1.16 mg/m3 (SD = 1.2). Based on t-test results, there was a statistically signif-

icant difference with respect to the chlorophyll a concentration (Table 1). In general, grid cells

that were intersected by at least one recreational trip had an average water depth of 38.1 m

Spatial and seasonal distribution of offshore recreational vessels
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(SD = 53.9), were closer to inlets (mean distance = 57.0 km, SD = 32.6), and had a higher per-

centage of artificial reefs (12.4%). When comparing grid cells with recreational trip counts to

those without, there is a statistical difference for all environmental variables except for SST

(Table 1).

Recreational boating trip abundance was significantly correlated year-round with chloro-

phyll a concentration, distance from grid centroids to the nearest inlet, and abundance of arti-

ficial reefs. Chlorophyll a concentration had the strongest relationship with boating trip

abundance (Mantel r = 0.21–0.27), with the strongest correlation observed during the winter

season. Pearson’s correlation analysis led to similar conclusions with respect to the relationship

between the dependent and independent variables [48].

Simple mantel tests and Pearson’s correlation analysis showed significant associations

between SST, chlorophyll a concentration, distance to the nearest inlet, and latitude for all sea-

sons. Water depth, SST, and distance to the nearest inlet variables were excluded from further

analyses because they showed the highest VIF. Further analyses were conducted using only

chlorophyll a concentration, latitude and longitude, and abundance of artificial reefs as explan-

atory variables.

The presence/absence model for the winter season allowed for the incorporation of other

independent variables, such as boaters’ age and boating experience, total route length, inlet

where the route originated, and vessel length. Distance to the nearest inlet (r = -0.18), total

route length (r = 0.1), chlorophyll a concentration (r = 0.1), and longitude (r = -0.1) showed

some relationship with the presence/absence of recreational boating routes.

Density model–comparison of count data models

Based on AIC estimates, the generalized additive model (GAM) fit the data better than the

other evaluated models (Table 2). Analysis of the residuals also corroborated this. When the

Table 1. Descriptive statistics of grid cells associated with the presence and absence of recreational boating routes. Recreational boating routes (Routes), sea surface

temperature (SST), chlorophyll a concentrations, water depth, distance of the centroid of each grid cell to the nearest inlet (Inlet), and abundance of artificial reefs (Reef).

Variables Mean (SD) t-test p-value

Routes = 0 Routes� 1

Routes 777 2919 na na

SST (oC) 23.8 (3.6) 24.0 (3.1) -1.6 .11

Chlorophyll a 0.6 (0.8) 1.2 (1.2) -14.4 < .001

Water depth (m) -60.6 (91.6) -38.1 (53.9) -6.6 < .001

Inlet (km) 87.6 (27.9) 57.0 (32.6) 26.2 < .001

Reef 2.3% 12.4% -12.2 < .001

https://doi.org/10.1371/journal.pone.0208126.t001

Table 2. Model comparison for the count data for different seasons. k = number of model parameters, RSS = residual sum of squares, weights = AIC weights,

RMSD = root mean square deviation.

Model Winter Spring Summer Fall

k RSS AIC Delta Weight k RSS AIC Delta Weight k RSS AIC Delta Weight k RSS AIC Delta Weight

Poisson (PO) 5 7289 9626 5387 <0.001 5 9011 12035 6864 <0.001 5 10855 13352 8942 <0.001 5 7319 9878 5441 <0.001

Negative binomial

(NB)

6 981 4714 475 <0.001 6 1000 5573 401 <0.001 6 966 5036 627 <0.001 6 974 4816 380 <0.001

Hurdle (HUNB) 11 960 4639 401 <0.001 9 997 5522 351 <0.001 9 929 5030 620 <0.001 10 1139 4779 343 <0.001

Zero-inflated (ZINB) 11 1024 4554 315 <0.001 9 948 5557 386 <0.001 9 987 4988 579 <0.001 10 1244 4810 373 <0.001

Generalized additive

(GAM)

19 477 4239 0 0.99 25 421 5171 0 0.99 19 508 4410 0 0.99 18 569 4437 0 0.98

https://doi.org/10.1371/journal.pone.0208126.t002
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normal probability plots of deviance residuals for the different models were compared, only

the residuals from the negative binomial and the GAM models did not show any unusual pat-

tern. Furthermore, when the predicted values generated by each of the models for the different

seasons were compared with the observed values of the dependent variable (boating trip abun-

dance), it was evident that the model with the best fit was the GAM (Fig 2).

GAM model

Model selection (stepwise) was performed for each season. For most seasons, a model that

included latitude, longitude, interaction between latitude and longitude, chlorophyll a concen-

tration, and abundance of artificial reefs resulted in the best fit (higher explained deviance and

lower AIC). The only exception was the model for the summer season, which did not include

chlorophyll a concentration. The best model explained between 86.1% of the total deviance in

the fall and up to 88.6% in summer season (Table 3).

Offshore recreational vessel abundance showed a nonlinear relationship with location (lon-

gitude and latitude). The distribution of recreational vessels over the longitude (west-east) axis

(x) showed an increasing pattern with peaks around the 81o0’W and 80o48W longitudes (Fig

3). However, this distribution was wider during the summer season followed by the winter sea-

son, with vessels travelling further east. Over the summer and fall, the smoothing function

showed a narrowed size distribution on the longitude axis (Fig 3). The smoothing functions

for the distribution of recreational boating trips for the latitude axis (y) showed an increasing

pattern from south to north, up to a latitude of 30o45’N (north of St. Marys inlet) (Fig 3).

The smoothing function for chlorophyll a concentration in the model varied seasonally.

For the winter season, as the concentration of chlorophyll a increased so did the abundance of

recreational vessels, with a peak between 5–7 mg/m3 (Fig 3). During the spring season a higher

abundance of vessels occurred between 4.5–5.5 mg/m3, followed by another peak between 2.5–

3.5 mg/m3 (Fig 3). For the summer season, chlorophyll a concentration showed a linear rela-

tionship with respect to vessel abundance (Fig 3); however, this relationship was not signifi-

cant, and this variable was dropped from the final summer season model. Over the fall season

vessel abundance increased with increasing chlorophyll a concentration (Fig 3).

The relationship between the distribution and abundance of offshore recreational vessels

and the abundance of artificial reefs was similar for all four seasons. In general, the abundance

of vessels increased with increasing numbers of artificial reefs, up to 2–4 reefs per grid cell.

However, as the number of artificial reefs increased so did the uncertainty (wider confidence

intervals) (Fig 3).

Model predictions were tested by comparing observed and predicted values. Selected mod-

els for each season showed R-square values between 0.64 and 0.79 (Table 3). All models under-

estimate boating trip abundance at high values, especially for grid cells near inlets. Fig 4 shows

the observed and predicted distribution and abundance of recreational vessels. Even though

the models show similar means (e.g., observed mean for winter was 6.86 and the mean of the

predicted values was 6.62), model predictions did not reach maximum values as extreme as

those observed in the training data set. Moran’s I estimates on the residuals did not show any

significant sign of autocorrelation (Moran’s I ranged from 0.34, p-value>.05 for summer up

to 0.37, p-value>.05 for the spring season).

Mixed effect logistic model (GLMM)

Model selection (stepwise procedure) identified latitude, longitude, and vessel size (length) as

the only significant fixed variables while controlling for correlation between the information

provided by boaters (boater’s ID). Predictions from the best model for the GLMM are shown

Spatial and seasonal distribution of offshore recreational vessels
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in Fig 5. In this case, the cumulative predicted values reached maximum values closer to the

observed (cumulative value predicted by GLMM = 154; Max value observed = 174). Areas near

the St. Augustine, St. Johns, and St. Marys inlets show the highest predicted values.

Fig 2. Observed and predicted boating trip abundance generated by different models for the winter season: Poisson model (PO), negative binomial model (NB),

hurdle negative binomial model (HUNB), zero inflated negative binomial model (ZINB), and generalized additive model (GAM).

https://doi.org/10.1371/journal.pone.0208126.g002
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Discussion

Our results show that the seasonal distribution of offshore recreational vessels can be explained

mainly by geographical variables such as latitude and longitude, abundance of artificial reefs,

and chlorophyll a concentrations. Neither SST nor water depth showed any effect on the sea-

sonal distribution of recreational vessels. Other studies have used water depth [18] and SST [7]

to describe boat traffic, but the temporal scale in these cases was shorter than our study (e.g.,

Wu et al., 2009 used hourly, weekly, and monthly estimates), which could explain the differ-

ences. Furthermore, SST and water depth were highly correlated with other variables and to

avoid problems with multicollinearity they were not included in the final seasonal models. By

analyzing the dataset using mixed model methods, we were able to measure the effects of vari-

ables related to boaters, their boats, and their self-mapped boating trips. In general, when used

to describe presence/absence patterns of boating routes in the sampling grid cells, all the rela-

tionships between these variables were weak, ranging from -0.18 to 0.1 (with 1 being highly

correlated), Nevertheless, the analyses of the dataset using this methodology allowed us to cor-

roborate the results obtained by the GAM analyses.

The frequency of offshore recreational boating trips per spatial cell follows a negative bino-

mial distribution. Although there are a great number of modeling approaches that can be used

Table 3. Model selection to test for the spatial distribution of offshore recreational boating trips for each season. x = longitude, y = latitude, x:y = interaction between

longitude and latitude, chl = chlorophyll a concentrations, ref = reef abundance per sampling unit, and s = thin plate regression spline fit, k = number of model parameters,

RSS = residual sum of squares, weights = AIC weights, RMSD = root mean square deviation.

Model Explanatory variables Model parameters Observed vs

Predicted

s(x:y) s(x) s(y) s(chl) s(ref) k RSS AICc Delta Weight % deviance explained R-Sq (adj) R-sq RMSD

WINTER

5 + + + + + 51 683 3644 0 0.99 87.1 0.61 0.64 9.0

4 + + + + 53 696 3661 17 0 86.9 0.61 0.65 9.0

3 + + + 47 724 3675 32 0 86.3 0.57 0.61 9.0

2 + + 36 957 3884 240 0 81.9 0.39 0.41 11.3

1 + 24 1165 4066 422 0 78.0 0.38 0.39 11.5

SPRING

5 + + + + + 51 705 4581 0 0.99 86.2 0.78 0.79 7.7

4 + + + + 50 721 4593 13 0.00 85.8 0.76 0.78 8.0

3 + + + 44 750 4609 28 0 85.2 0.75 0.76 8.2

2 + + 35 869 4709 129 0 82.9 0.62 0.63 10.2

1 + 24 1044 4860 279 0 79.4 0.56 0.57 11.0

SUMMER

6 + + + + 48 843 4057 0 0.91 88.6 0.62 0.64 15.1

5 + + + + + 45 855 4061 5 0.09 88.4 0.63 0.65 14.9

3 + + + 46 883 4090 34 0 88.0 0.61 0.63 15.3

4 + + + + 47 883 4092 66 0 88.0 0.61 0.63 15.4

2 + + 34 1150 4331 275 0 84.4 0.47 0.49 18.0

1 + 24 1268 4428 371 0 82.8 0.43 0.45 18.7

FALL

5 + + + + + 52 753 3978 0 0.99 86.1 0.67 0.71 9.9

4 + + + + 49 772 3990 12 0.00 85.8 0.67 0.71 9.9

3 + + + 45 801 4011 33 0 85.2 0.61 0.63 10.8

2 + + 36 1081 4270 292 0 80.1 0.45 0.47 12.9

1 + 24 1240 4403 425 0 77.2 0.41 0.43 13.4

https://doi.org/10.1371/journal.pone.0208126.t003
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to describe and predict offshore recreational boating trips, our results show that the GAM pro-

duced a superior model with better fit than did the other studied models. The use of spline

functions to describe the relationship between the dependent and independent variables

proved to be more effective.

The most parsimonious model for almost all seasons includes latitude and longitude, chlo-

rophyll a concentrations, and abundance of artificial reefs. Because there are only a limited

number of access points to offshore waters, we expected location (in the form of latitude and

longitude) to have an important role in describing the distribution of offshore recreational ves-

sels. Sidman and Fik [20] also highlighted the importance of geographic and network variables

in modeling the distribution of recreational vessels and destination choices. Recreational vessel

distribution has also been linked with the distribution of target fish species. Fishing is the lead-

ing activity of recreational vessels in Florida. Sidman and others [16] found that 73% of recrea-

tional boaters in Brevard County (adjacent to our study area) engaged in fishing activities.

Several studies found a link between concentrations of chlorophyll a and sea surface tempera-

ture and fishery yields [49,50]. In the case of recreational fisheries, Wall and others [51] found

that positive catch rates of king mackerel (Scomberomorus cavalla) were significantly influ-

enced by chlorophyll a values and temporal variables (season and year). As a result, we

included chlorophyll a concentration as a proxy variable for fish distribution (which is the

main target of anglers). Overall, we found a positive effect of chlorophyll a concentration on

the distribution of recreational boating trips. The only exception for this finding was the boat-

ing routes described over the summer months. Consequently, we included chlorophyll a con-

centration as a proxy variable for fish distribution (which are the main target of anglers). In

general, we found a positive effect of chlorophyll a concentration on the distribution of recrea-

tional boating trips. The only exception for this finding was the boating routes described over

Fig 3. Smoothed curve of the additive effect of covariates modeling the abundance of offshore recreational

boating trips in the southeastern United States. Winter (A), Spring (B), Summer (C), and Fall (D). Predictor

variables include longitude (x), latitude (y), chlorophyll a concentrations (Chlo), and abundance of artificial reefs

(Reef). Solid line depicts the estimate of the smooth function and dashed lines indicate 95% confidence bands.

Estimated degrees of freedom for each smoothed variable are shown on the y-axis.

https://doi.org/10.1371/journal.pone.0208126.g003
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the summer months. During the summer, chlorophyll a concentrations were more homo-

geneously distributed throughout the study area, resulting in non-significant differences

between grid cells with and without boating routes and these variables.

We also included abundance of artificial reefs in our analysis due to their relationship with

fish abundance [52,53,54]. Based on our results, there seems to be a positive relationship with

abundance of artificial reefs and offshore recreational boating routes for all seasons. Neverthe-

less, we need to be cautious when interpreting this observed association given that the place-

ment of artificial reefs is likely predicated on several factors (e.g., convenience, near inlets, or

close to specific habitats). More research is needed to clarify whether recreational boaters are

really targeting areas near artificial reefs or if the observed relationship is an effect of the place-

ment of these artificial structures at vessel transiting areas.

As expected, there were slight differences in the seasonal distribution of recreational vessels,

with the spring season showing a more dispersed distribution when compared with other sea-

sons. Adverse climatic conditions (e.g., decreased temperatures, rough sea states) over the

Fig 4. Observed and predicted offshore recreational boating trip abundance per grid cell for different seasons using GAMs.

https://doi.org/10.1371/journal.pone.0208126.g004
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winter and fall seasons, and nearshore locations of target fish species may influence how far

east (longitudinal movements) recreational boating trips reach; which would affect not only

the number of boating trips but also their distribution. With respect to the north-south move-

ments (latitudinal), two areas were shown to be of great importance: St. Johns inlet and

St. Augustine inlet. Year-round, most of the boating trips departed from latitudes that corre-

spond with these two inlets. However, we did observe seasonal changes with respect to the

abundance of boating trips originating from these inlets. For the winter and spring seasons we

observed a greater number and a wider distribution of boating trips at St. Augustine inlet. This

inlet is closest (shortest distance) to the Florida Hatteras slope and to some important deep-

water fishing areas, such as “The Ledge” (Waterproof Chart #125F). Over the summer and fall

seasons, even though the area experiences an increase in temperature and calmer waters, it

also experiences an increase in weather events such as hurricanes and tropical storms. During

the study period (2011–2012) there were 39 tropical storms and 17 hurricanes [55,56], some of

which could have affected the observed distribution of boating routes and ultimately affected

predicted values generated from those observations. Our dataset has limitations due to the

data collection timeframe and the temporal scale of our study. More on-the-ground data is

Fig 5. Presence/absence and predicted offshore recreational boating trip abundance for the winter season from the GLMM.

https://doi.org/10.1371/journal.pone.0208126.g005
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needed at different temporal and spatial scales to clarify the effect of major weather events on

the distribution of offshore recreational boating trips in the study area.

Although our dataset conforms to a negative binomial distribution, there are some high val-

ues located near the inlets that affected the predicted values generated for each of the best sea-

sonal models. In most of the instances, those high values could be considered outliers.

However, because it was necessary to consider them due to the nature of our study, they were

not discarded from our analyses. Nonetheless, when we compared the predictions generated

from the GAM models with the presence/absence approach (GLMM), there is a good level of

agreement with respect to the predicted values. Therefore, it is important to point out that

although our models showed a moderate fit, they present limitations that should be taken into

account when using this information for spatial planning and management purposes.

It is important to acknowledge that the findings of our study may be limited to the surveyed

sample because the return rate of our mail survey (19%) might be considered low. The main

issue with low response rates is that non-respondents may be underrepresented in this sample,

limiting the generalizability of the results to the population of interest [57]. However, this is

typical of recreational boater surveys, with similar studies reporting return rates between 19–

23% [13,14,15,16].

Management implications

The information provided by this study can be used by managers and law enforcement to

determine areas with high/low probability of recreational vessel occurrence and abundance.

The study area is large, and this information could help prioritize areas for spatial planning

and management purposes. The study area is also very complex, with a number of maritime

activities and several marine species co-occurring. Therefore, these models could provide

information to analyze the distribution and overlap of recreational boating trips with other

maritime activities (e.g., cargo ships, commercial vessels) and species (e.g., right whales, sea

turtles, sharks) that utilize this area. These analyses could be used to decrease harmful interac-

tions among these groups and activities.
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